Massdomain.ru

Хостинг и домены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему делить на ноль нельзя

Почему делить на ноль нельзя?

Начнём с того, что четыре арифметических действия — сложение, вычитание, умножение и деление — не являются равноправными. И разговор идёт не о порядке выполнения действий при решении какого-нибудь примера или уравнения. Нет, имеется в виду само понятие числа. И согласно ему, наиболее важными являются сложение и умножение. А уже вычитание и деление «вытекают» из них тем или иным образом.

Сложение и вычитание

Например, разберём простую операцию: «3 — 1». Что это означает? Школьник легко объяснит эту задачку: это означает, что было три предмета (например, три апельсина), один вычли, оставшееся количество предметов и есть верный ответ. Верно описано? Верно. Мы и сами объяснили бы точно так же. Но математики рассматривают процесс вычитания иначе.

Операция «3 — 1» рассматривается не с позиции вычитания, а только со стороны сложения. Согласно этому нет никаких «три минус один», есть «какое-то неизвестное число, которое при прибавлении одного даёт три». Таким образом, простое «три минус один» превращается в уравнение с одним неизвестным: «х + 1 = 3». Причём появление уравнения изменило знак — вычитание поменялось на сложение. Осталась только одна задача — отыскать подходящее число.

Алгебра в таблицах. Справочное пособие

Умножение и деление

Аналогичные метаморфозы происходят с таким действием, как деление. Задачу «6 : 3» математики отказываются воспринимать как некие шесть предметов, разбитых на три части. «Шесть разделить на три» не что иное, как «неизвестное число, умноженное на три, в результате чего получилось шесть»: «х · 3».

Делим на ноль

Выяснив принцип математических действий по отношению к задачам с вычитанием и делением, рассмотрим наше деление на ноль.

Задача «4 : 0» превращается в «х · 0». Получается, нам нужно найти такое число, умножение с которым даст нам 4. Известно, что умножение на ноль всегда даёт ноль. Это уникальное свойство нуля и, собственно, его суть. Числа, умноженного на ноль и выдающего любое другое число кроме нуля, не существует. Мы пришли к противоречию, значит задача не имеет решения. Следовательно, записи «4 : 0» не соответствует никакое определённое число, а отсюда уже вытекает её бессмысленность. Поэтому, чтобы кратко подчеркнуть непродуктивность такого процесса, как деление на ноль, и говорят, что «на ноль делить нельзя».

Больше интересных материалов:

Читайте так же:
Можно ли по картинке найти товар

А что получится, если ноль разделить на ноль?

Представим такое уравнение: «0 · x = 0». С одной стороны, выглядит вполне справедливо. Представляем вместо неизвестного числа ноль и получаем готовое решение: «0 · 0 = 0». Из этого вполне логично вывести, что «0 : 0 = 0».

Однако теперь давайте в это же уравнение с неизвестным вместо «x = 0» подставим любое другое число, например «x = 7». Получившееся выражение выглядит теперь как «0 · 7 = 0». Вроде бы, всё верно. Делаем обратную операцию и получаем «0 : 0 = 7». Но тогда, получается, что можно взять абсолютно любое число и вывести 0 : 0 = 1, 0 : 0 = 2. 0 : 0 = 145. — и так до бесконечности.

Если при любом числе х уравнение будет справедливо, то мы не имеем права выбрать лишь одно, исключив остальные. Значит, мы так и не можем ответить, какому числу соответствует выражение «0 : 0». Снова оказавшись в тупике, мы признаём, что и эта операция тоже бессмысленна. Получается, что ноль нельзя делить даже на самого себя.

Оговоримся, что в математическом анализе иногда бывают специальные условия задачи — так называемое «раскрытие неопределенности». В подобных случаях разрешается отдавать предпочтение одному из возможных решений уравнения «0 · x = 0». Однако в арифметике таких «допусков» не происходит.

Действия с нулем

Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов действий:

  • Сложение,
  • Умножение,
  • Вычитание,
  • Деление (ноля на число),
  • Возведение в степень.

Важно! Если при сложении к любому числу прибавить ноль, то это число останется прежним и не поменяет своего числового значения. То же произойдет, если от любого числа отнять ноль.

При умножении и делении все обстоит немного иначе. Если умножить любое число на ноль, то и произведение тоже станет нулевым.

Запишем это как сложение:

Всего складываемых нолей пять, вот и получается, что

математика

Попробуем один умножить на ноль. Результат также будет нулевым.

Ноль также можно разделить на любое другое число, не равное ему. В этом случае получится дробь, значение которой также будет нулевым. Это же правило действует и для отрицательных чисел. Если ноль делить на отрицательное число, то получится ноль.

Также можно возвести любое число в нулевую степень. В таком случае получится 1. При этом важно помнить, что выражение «ноль в нулевой степени» абсолютно бессмысленно. Если попытаться возвести ноль в любую степень, то получится ноль. Пример:

Читайте так же:
Мессенджер с паролем на вход

Пользуемся правилом умножения, получаем 0.

Это интересно! Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения

Так можно ли делить на ноль

Итак, вот мы и подошли к главному вопросу. Можно ли делить на ноль вообще? И почему же нельзя разделить число на ноль при том, что все остальные действия с нулем вполне существуют и применяются? Для ответа на этот вопрос необходимо обратиться к высшей математике.

Начнем вообще с определения понятия, что же такое ноль? Школьные учителя утверждают, что ноль-это ничто. Пустота. То есть когда ты говоришь, что у тебя 0 ручек, это значит, что у тебя совсем нет ручек.

В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь ноль называют неопределенностью, так как если провести небольшое исследование, то получается, что при делении ноля на ноль мы можем в результате получить любое другое число, которое не обязательно может быть нолем.

математика

Знаете ли вы, что те простые арифметические действия, которые вы изучали в школе не так равноправны между собой? Самыми базовыми действиями являются сложение и умножение.

Для математиков не существует понятий «деление» и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:

Таким образом, получается, что неизвестной разностью является некое число, которое нужно прибавить к 3, чтобы получить 5. То есть, не нужно ничего вычитать, нужно просто найти подходящее число. Это правило действует для сложения.

Немного иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3_0=х, тогда, если перевернуть запись, получится 3*х=0. А число, которое умножалось на 0 даст ноль и в произведении. Получается, что числа, которое бы давало в произведении с нолем какую-либо величину, отличную от ноля, не существует. А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.

Но что будет, если попытаться разделить сам ноль на себя же? Возьмем как х некое неопределенное число. Получается уравнение 0*х=0. Его можно решить.

Если мы попробуем взять вместо х ноль, то мы получим 0_0=0. Казалось бы, логично? Но если мы попробуем вместо х взять любое другое число, например, 1, то в конечном итоге получится 0_0=1. Та же ситуация будет, если взять любое другое число и подставить его в уравнение.

Читайте так же:
Можно ли пользоваться яндекс навигатором без интернета

В этом случае получится, что мы можем как множитель взять любое другое число. Итогом будет бесконечное множество разных чисел. Порой все же деление на 0 в высшей математике имеет смысл, но тогда обычно появляется некое условие, благодаря которому мы сможем все-таки выбрать одно подходящее число. Это действие называется «раскрытием неопределенности». В обычной же арифметике деление на ноль снова потеряет свой смысл, так как мы не сможем выбрать из множества какое-то одно число.

Важно! На ноль нельзя разделить ноль.

Целесообразность попыток

если число умножить на 0 то получится

Среди учеников довольно часто на первых порах освоения учебного материала встречаются попытки число умножить на 0. Подобное действие является грубейшей ошибкой.

По существу от таких попыток ничего не произойдет, но и пользы не будет. Если произвести умножение на нулевое значение, то получится в дневнике неудовлетворительная отметка.

Единственная мысль, которая должна возникать при умножении на пустоту, – невозможность действия. Запоминание в данном случае играет немаловажную роль. Выучив правило раз и навсегда, учащийся предотвращает появление спорных ситуаций.

В качестве примера, применяемого при умножении на нулевое значение, разрешается использовать следующую ситуацию. Саша решила купить яблоки. Пока она была в супермаркете, она остановила выбор на 5 крупных спелых яблоках. Сходив в отдел молочной продукции, она посчитала, что этого ей будет недостаточно. Девочка положила к себе в корзину еще 5 штук.

Поразмыслив еще чуть-чуть, она взяла еще 5. В результате на кассе у Саши получилось: 5 * 3 = 5 + 5 + 5 = 15 яблок. Если бы она положила по 5 яблок только 2 раза, то было бы 5 * 2 = 5 + 5 = 10. В том случае, если бы Саша не положила в корзинку ни разу по 5 яблок, было бы 5 * 0 = 0 + 0 + 0 + 0 + 0 = 0. Иными словами, купить яблоки 0 раз значит не купить ни одного.

Ноль и бесконечность

Бесконечность часто встречается в высшей математике. Так как школьникам просто не важно знать о том, что существуют еще математические действия с ней, то и объяснить детям, почему деление на 0 выполнить нельзя, учителя как следует не могут.

Ноль и бесконечность

Математические секреты ученики начинают узнавать на первом курсе института. Высшая математика предоставляет комплекс задач, которые не имеют решения. Самыми известными являются задачи с бесконечностью. Их решают при помощи математического анализа.

Читайте так же:
Можно ли поставить посудомоечную машину на стиральную

К бесконечности применимы математические действия: сложение, умножение. Еще применяют вычитание и деление, но в конечном итоге они все равно сводятся к двум простейшим операциям.

Но что будет, если попытаться:

  1. Бесконечность умножить на 0. По идее, если попробуем умножить на 0 любое число, то получим 0. Но бесконечностью является неопределенное множество цифр. Так как мы не можем выбрать из этого множества одну, то выражение ∞*0 не имеет решения и является абсолютно бессмысленным.
  2. Ноль делить на бесконечность. Здесь происходит та же история, что и выше. Не можем выбрать одну цифру, а значит не знаем на что разделить. Выражение не имеет смысла.

Теперь попробуем поделить бесконечность на 0. Должна выйти неопределенность. Но если попробуем заменить деление умножением, то получится определенный ответ.

Как результат, выходит такой математический парадокс.

Ответ, почему нельзя делить на ноль:

Мысленный эксперимент, пробуем делить на ноль:

Итак, теперь известно, что 0 подчиняется практически всем операциям, которые производят с обычными числами, кроме одной единственной. На 0 делить нельзя только потому, что в результате получается неопределенность.

6. В жизни

Закон Ома связывает силу тока, напряжение и сопротивление в цепи. Часто его записывают в такой форме:

Позволим себе пренебречь аккуратным физическим пониманием и формально посмотрим на правую часть как на частное двух чисел. Вообразим, что решаем школьную задачу по электричеству. В условии дано напряжение в вольтах и сопротивление в омах. Вопрос очевиден, решение в одно действие.

А теперь заглянем в определение сверхпроводимости: это свойство некоторых металлов обладать нулевым электрическим сопротивлением.

Ну что, решим задачку для сверхпроводящей цепи? Просто так подставить R = 0 не выйдет, физика подкидывает интересную задачу, за которой, очевидно, стоит научное открытие. И люди, сумевшие поделить на ноль в этой ситуации, получили Нобелевскую премию. Любые запреты полезно уметь обходить!

Деление

Из всего вышеперечисленного вытекает и другое важное правило:

На ноль делить нельзя!

Деление чисел на ноль

Это правило нам тоже с самого детства упорно вбивают в голову. Мы просто знаем, что нельзя и всё, не забивая себе голову лишней информацией. Если вам неожиданно зададут вопрос, по какой причине запрещено делить на ноль, то большинство растеряется и не сможет внятно ответить на простейший вопрос из школьной программы, потому что вокруг этого правила не ходит столько споров и противоречий.

Все просто зазубрили правило и не делят на ноль, не подозревая, что ответ кроется на поверхности. Сложение, умножение, деление и вычитание — неравноправны, полноценны из перечисленного только умножение и сложение, а все остальные манипуляции с числами строятся из них. То есть запись 10: 2 является сокращением уравнения 2 * х = 10. Значит, запись 10: 0 такое же сокращение от 0 * х = 10. Получается, что деление на ноль — это задание найти число, умножая которое на 0, получится 10. А мы уже разобрались, что такого числа не существует, значит, у этого уравнения нет решения, и оно будет априори неверным.

Расскажу тебе позволь,

Чтобы не делил на 0!

Режь 1 как хочешь, вдоль,

Только не дели на 0!

Что поможет освоить устный счёт

Для упражнений придётся ежедневно придумывать новые и новые примеры, только если вы сами этого хотите. В противном случае воспользуйтесь другими доступными способами.

Читайте так же:
Можно ли снять валюту в банкомате сбербанка

Настольные игры

Играя в те, где необходимо постоянно вычислять в уме, вы не просто учитесь быстро считать. А совмещаете полезное с приятным времяпрепровождением в кругу семьи или друзей.

Карточные забавы вроде «Уно» и всевозможные варианты математического домино позволяют школьникам играючи освоить простое сложение, вычитание, умножение и деление. Более сложные экономические стратегии а-ля «Монополия» развивают финансовое чутьё и оттачивают сложные навыки счёта.

Что купить

  • «Уно»;
  • «7 на 9»;
  • «7 на 9 multi»;
  • «Трафик Джем»;
  • «Хекмек»;
  • «Математическое домино»;
  • «Умножариум»;
  • «Код фараона»;
  • «Суперфермер»;
  • «Монополия».

Мобильные приложения

С ними вы сможете довести устный счёт до автоматизма. Большинство из них предлагают решить примеры на сложение, вычитание, умножение и деление по программе младших классов. Но вы удивитесь, насколько это непросто. Особенно если задачи нужно щёлкать на время, без ручки и бумаги.

Математика: устный счёт, таблица умножения

Охватывает задания на устный счёт, которые соответствуют 1–6 классам школьной программы, включая и задачи на проценты. Позволяет тренировать скорость и качество счёта, а также настраивать сложность. Например, от простой таблицы умножения можно перейти к умножению и делению двузначных и трёхзначных чисел.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector