Основные геометрические фигуры
Основные геометрические фигуры на плоскости — это точка и прямая линия. А простейшие фигуры — это луч, отрезок и ломаная линия.
Минимальный объект в геометрии — точка. Ее особенность в том, что она не имеет размеров: у нее нет высоты, длины, радиуса. У точки можно определить только ее расположение, которое принято обозначать одной заглавной буквой латинского алфавита.
Из множества точек может получится линия, а из нескольких соединенных между собой линий — геометрические фигуры.
Обучение на курсах по математике поможет быстрее разобраться в видах и свойствах геометрических фигур.
Каждая математическая фигура имеет собственную величину, которую можно измерить при помощи формул и внимательности.
Площадь — это одна из характеристик замкнутой геометрической фигуры, которая дает нам информацию о ее размере. S (square) — знак площади.
Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской P.
Если параметры переданы в разных единицах измерения длины, нужно перевести все данные к одной единице измерения.
Популярные единицы измерения площади:
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Геометрические тела — часть пространства, которая ограничена замкнутой поверхностью своей наружной границы.
Если все точки фигуры принадлежат одной плоскости, значит она является плоской.
Объемная фигура — геометрическая фигура, у которой все точки не находятся на одной плоскости.
Примеры объемных геометрических фигур:
- шар,
- конус,
- параллелепипед,
- цилиндр,
- пирамида,
- сфера.
Рассмотрим подробнее некоторые фигуры, разберем их определения и свойства.
Вписанный четырехугольник — определения и теоремы
Вот оказывается, что это неправда!
НЕ ВСЕГДА четырехугольник можно вписать в окружность.
Есть очень важное условие:
Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма двух его противоположных углов равна ( displaystyle 180<>^circ ).
На нашем рисунке: ( displaystyle alpha +beta =180<>^circ )
Посмотри, углы ( displaystyle alpha ) и ( displaystyle beta ) лежат друг напротив друга, значит, они противоположные. А что же тогда с углами ( displaystyle varphi ) и ( displaystyle psi )? Они вроде бы тоже противоположные?
Можно ли вместо углов ( displaystyle alpha ) и ( displaystyle beta ) взять углы ( displaystyle varphi ) и ( displaystyle psi )?
Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет ( displaystyle 180<>^circ ).
Оставшиеся два угла тогда сами собой тоже дадут в сумме ( displaystyle 180<>^circ ). Не веришь? Давай убедимся.
Пусть ( displaystyle alpha +beta =180<>^circ ). Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, ( displaystyle 360<>^circ ).
То есть ( displaystyle alpha +beta +varphi +psi =360<>^circ ) — всегда! ( displaystyle 180<>^circ )
Но ( displaystyle alpha +beta =180<>^circ ), →( displaystyle varphi +psi =360<>^circ -180<>^circ =180<>^circ).
Так что запомни крепко-накрепко:
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна ( displaystyle 180<>^circ )
Если у четырехугольника есть два противоположных угла, сумма которых равна ( displaystyle 180<>^circ ), то такой четырехугольник вписанный.
Доказательство смотри чуть дальше.
А пока давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна ( displaystyle 180<>^circ ).
Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма?
Вписанный параллелограмм
Попробуем сперва «методом научного тыка»:
Вот как-то не получается. Теперь применим знание:
Предположим, что нам как-то удалось посадить на параллелограмм ( displaystyle ABCD) окружность. Тогда непременно должно быть: ( displaystyle alpha +beta =180<>^circ ), то есть ( displaystyle angle B+angle D=180<>^circ ).
А теперь вспомним о свойствах параллелограмма: у всякого параллелограмма противоположные углы равны.
То есть ( displaystyle angle B = angle D).
У нас получилось, что
( displaystyle left< begin
А что же углы ( displaystyle A) и ( displaystyle C)?
Ну, то же самое конечно.
( displaystyle ABCD) – вписанный → ( displaystyle angle A+angle C=180<>^circ ) → ( displaystyle angle A=90<>^circ )
( displaystyle ABCD) — параллелограмм→ ( displaystyle angle A=angle C) → ( displaystyle angle C=90<>^circ )